夏天又到了呀。
在之前的一篇推文 [Vacuum Energy By Path Integral] 中,我们讨论了如何利用路径积分的方法计算标量、旋量和矢量场的真空零点能。从现代的观点来看,这其实就是在计算自由场的一圈有效作用量。以场论的角度来说,描述引力场的广义相对论也不过只是一种特别的规范场。因此我们自然要问,可以用这种方法计算引力场的真空零点能吗?答案是可以的,至少在线性近似下是可以的。在本文中,我们就来介绍这个方法在引力场中的应用。
Propagator of Linear Gravity
为了进行接下来的计算,我们首先要获得微扰展开下的线性引力论。考虑最简单的情况,我们将背景度规直接取为 平直的 Minkowski 度规,并执行微扰展开,于是有:
\[g_{\mu\nu}=\eta_{\mu\nu}+\kappa h_{\mu\nu}\]其中 $h_{\mu\nu}$
为微扰部分,$\kappa=\sqrt{32\pi G_N}$
为约化系数。相应的,度规的逆可以被展开为:
广义相对论的 Einstein-Hilbert 作用量为:
\[S_{EH}=\int{\mathrm{d}^4x}\sqrt{-\det{g}}\frac{2}{\kappa^2}R\]其中 $R=g^{\mu\beta}R_{\mu\beta}=g^{\mu\beta}R^{\nu}_{\mu\nu\beta}$
为 Riemann 曲率标量。Riemann 曲率张量由下式给出:
其中 $\Gamma^{\nu}_{\alpha\mu}$
为与度规适配的联络系数,即 Christoffel 符号:
将这些全部代入 Riemann 曲率标量的表达式,可以得到:
\[\begin{aligned} R&=\partial_{\nu}(g^{\mu\beta}\Gamma^{\nu}_{\beta\mu})-\frac{1}{2}\partial^\mu(g^{\nu\lambda}\partial_{\mu}g_{\lambda\nu})-g_{\mu\lambda,\beta}g^{\beta\mu,\lambda}+\frac{1}{2}g_{\beta\mu,\nu}g^{\beta\mu,\nu} \\&+\frac{1}{4}(2g^{\nu\lambda}g_{\nu\lambda,\sigma}g^{\sigma\rho}g_{\mu\rho,\mu}-g^{\nu\lambda}g_{\nu\lambda,\sigma}g^{\beta\mu}g_{\beta\mu,\sigma})-\frac{1}{4}(2g_{\sigma\lambda,\mu}g^{\mu\sigma,\lambda}-g_{\mu\rho,\nu}g^{\mu\rho,\nu}) \end{aligned}\]注意到 $\sqrt{-\det{g}}$
对微扰展开也有如下贡献:
其中 $h={h^{\mu}}_{\mu}$
. 将这些微扰展开带入到 E-H 作用量表达式中,并舍去所有的全导数项,我们可以获得直到二阶的线性化引力场的 Lagrangian 1(亦即 Fierz-Pauli Lagrangian):
为了获取传播子,我们引入广义 $\xi$ 规范:
\[\mathscr{L}_{GF}=-\frac{1}{\xi}G_{\mu}G^{\mu}\]其中规范固定函数取为谐和坐标条件:
\[G_{\mu}=\partial^{\nu}\left(h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h\right)\]于是可以写出含规范固定作用项之后的 Lagrangian:
\[\mathscr{L}'=\left(1-\frac{1}{\xi}\right)h_{\lambda\mu,\lambda}h^{\beta\mu,\beta}-\frac{1}{2}h_{\beta\mu,\lambda}h^{\beta\mu,\lambda}-\left(1-\frac{1}{\xi}\right)h^{\mu\lambda,\lambda}\partial_{\mu}h+\left(\frac{1}{2}-\frac{1}{4\xi}\right)\partial_{\lambda}h\partial^{\lambda}h\]提取出二次项的系数为:
\[\mathscr{D}^{\mu\nu,\rho\sigma}=-2\cdot\left[-\left(1-\frac{1}{\xi}\right)(p^{\mu}p^{\nu}\eta^{\rho\sigma}-p^{\nu}p^{\rho}\eta^{\mu\sigma})-\frac{1}{2}p^2\eta^{\mu\rho}\eta^{\nu\sigma}+\left(\frac{1}{2}-\frac{1}{4\xi}\right)p^2\eta^{\mu\nu}\eta^{\rho\sigma}\right]\]取逆可以获得传播子的表达式2:
\[\mathscr{D}^{-1}_{\mu\nu,\rho\sigma}=\frac{1}{p^2-\mathrm{i}\varepsilon}\left\{\frac{1}{2}\left[(\eta_{\mu\rho}\eta_{\nu\sigma}+\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\nu}\eta_{\rho\sigma})-\frac{1-\xi}{p^2}(p_{\mu}p_{\sigma}\eta_{\nu\rho}+p_{\nu}p_{\sigma}\eta_{\mu\rho}+p_{\mu}p_{\rho}\eta_{\nu\sigma}+p_{\nu}p_{\rho}\eta_{\mu\sigma})\right]\right\}\]注意,这里 $\mathscr{D}$ 指标里的逗号只表示分割指标组,不表示导数。
(其实我们的目的并不是获得传播子,而是获得二次项的逆以计算积分。)
Faddeev-Popov Ghost
为了获得鬼场的相应 Lagrangian, 我们需要考虑对度规的规范变换:
\[h_{\mu\nu}\rightarrow h_{\mu\nu}+\partial_{\mu}\varepsilon_{\nu}+\partial_{\nu}\varepsilon_{\mu}\]在该规范变换下,容易求得规范固定函数 $G_{\mu}$
的变化为:
于是自然有鬼场的 Lagrangian 项:
\[\mathscr{L}_{Ghost}=\bar{c}^{\mu}\partial^2c_{\mu}\]其中 $\mathcal{M}_{\mu\nu}$
也正是我们接下来计算真空能量所需要的二次型。
Calculation of Vacuum Energy
做完了前置准备工作,我们便可以实际进行真空能量的计算了。整体的计算思路和方法其实与矢量场别无二致,考虑到接下来的计算过程实际其实很繁琐,在计算开始之前,通过一个简单的分析先给出预期的结果将会是十分有益的。
我们知道,对于任意的一个四维时空,度规的分量组成了一个对称的 $4\times 4$ 矩阵。这意味着从表观上来看,度规张量场至少有 $4\times 4-6=10$ 个自由度。因此我们预期应当首先计算出一个 $10\times1/2\hbar\omega$ 的真空零点能。但正如电磁场被规范不变性限制到了只剩两个自由度,实际的引力场也只有两个独立的自由度,因此我们还需要鬼场去抵消掉 $8\times 1/2\hbar\omega$ 的零点能。而注意到对于引力场来说,鬼场 $c$ 和 $\bar{c}$ 将会直接称为一个携带有 Lorentz 指标的四分量 Grassmann 矢量,这意味着其将刚好提供 $-2\times 4=-8$ 倍的自由度抵消,使得引力场最终只剩下 $2\times 1/2\hbar\omega$ 的真空零点能。
接下来我们将通过计算验证这一点。
写下规范固定后的生成泛函:
\[\begin{aligned} \mathcal{Z}[0]_{h}&=\int\mathcal{D}g_{\mu\nu}\exp\left\{\mathrm{i}\int\mathrm{d}^4x\:\frac{R}{16\pi G_N}\right\} \\&\sim\int\mathcal{D}h_{\mu\nu}\exp\left\{\mathrm{i}\int\mathrm{d}^4x\mathrm{d}^4y\left[-\frac{1}{2}h_{\mu\nu}(x)\mathscr{D}^{\mu\nu,\rho\sigma}(x,y)h_{\rho\sigma}(y)+\mathscr{L}_{GF}-\mathrm{i}\varepsilon\text{项}\right]\right\} \end{aligned}\]基于与之前推文一致的讨论,我们接下来要计算:
\[I=\sum_{\mu\nu=\rho\sigma}\int\frac{\mathrm{d}^4p}{(2\pi)^4}\ln\mathscr{D}^{\mu\nu,\rho\sigma}(p)\]在有正规化的意义下我们可以执行分部积分,于是有:
\[\begin{aligned} I&=-\sum_{\mu\nu=\alpha\beta}\int\frac{\mathrm{d}^3p}{(2\pi)^3}\frac{p^0}{2\pi}\mathrm{d}(\ln\mathscr{D}^{\mu\nu,\alpha\beta}(p)) \\&=-\sum_{\mu\nu=\alpha\beta}\int\frac{\mathrm{d}^3p}{(2\pi)^3}\frac{\mathrm{d}p^0}{2\pi}p^0\mathscr{D}^{-1}_{\mu\nu,\rho\sigma}\frac{\mathrm{d}}{\mathrm{d}p^0}\mathscr{D}^{\rho\sigma,\alpha\beta}(p) \end{aligned}\]最复杂繁琐的处理便是计算 $\mathscr{D}^{-1}_{\mu\nu,\alpha\beta}{\mathrm{d}}/{\mathrm{d}p^0}(\mathscr{D}^{\alpha\beta,\rho\sigma}(p))$
这一项。首先计算出 $\mathscr{D}^{\alpha\beta,\rho\sigma}(p)$
对 $p^0$ 的导数,有:
其次调用传播子的结果,给出:
\[\mathscr{D}^{-1}_{\mu\nu,\rho\sigma}=\frac{1}{p^2-\mathrm{i}\varepsilon}\left\{\frac{1}{2}\left[(\eta_{\mu\rho}\eta_{\nu\sigma}+\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\nu}\eta_{\rho\sigma})-\frac{1-\xi}{p^2}(p_{\mu}p_{\sigma}\eta_{\nu\rho}+p_{\nu}p_{\sigma}\eta_{\mu\rho}+p_{\mu}p_{\rho}\eta_{\nu\sigma}+p_{\nu}p_{\rho}\eta_{\mu\sigma})\right]\right\}\]将对 $p^0$ 的导数中除去 $-2$ 后的第一项记为 $A^{\rho\sigma,\alpha\beta}$
,第二、三项记为 $B^{\rho\sigma,\alpha\beta}$
;将传播子分子的第一项记为 $C_{\mu\nu,\rho\sigma}$
,第二项记为 $D_{\mu\nu,\rho\sigma}$
. 逐项相乘,给出:
取迹,即令 $\mu\nu=\alpha\beta$
,给出:
将这些项加在一起,我们发现所有含 $\xi$ 的项恰好相互消除掉,这表明引力场的零点能同样不依赖于规范的选取。于是我们有:
\[\begin{aligned} \sum_{\mu\nu=\alpha\beta}\mathscr{D}^{-1}_{\mu\nu,\rho\sigma}\frac{\mathrm{d}}{\mathrm{d}p^0}\mathscr{D}^{\rho\sigma,\alpha\beta}(p)&=\frac{-2}{p^2-\mathrm{i}\varepsilon}(C_{\mu\nu,\rho\sigma}A^{\rho\sigma,\mu\nu}+C_{\mu\nu,\rho\sigma}B^{\rho\sigma,\mu\nu}+D_{\mu\nu,\rho\sigma}A^{\rho\sigma,\mu\nu}+D_{\mu\nu,\rho\sigma}B^{\rho\sigma,\mu\nu}) \\&=\frac{-2p^0}{p^2-\mathrm{i}\varepsilon}\times 10 \end{aligned}\]代回到零点能的积分,有:
\[I=-\int\frac{\mathrm{d}^3p}{(2\pi)^3}\frac{\mathrm{d}p^0}{2\pi}\frac{-2(p^0)^2}{p^2-\mathrm{i}\varepsilon}\times 10\]而我们又有:
\[E_0=\frac{1}{2\mathrm{i}}V\cdot I\]因而有:
\[E_0=\frac{1}{2}\int\frac{\mathrm{d}^3p}{(2\pi)^3}E_{\mathbf{p}}V\times 10\]这正是我们最开始预期的表观结果。
而进一步考虑鬼场的贡献,有:
\[\begin{aligned} \mathcal{Z}[0]_G=C_1\int\mathcal{D}\bar{c}^{\mu}\mathcal{D}c^{\nu}\exp\left\{\mathrm{i}\int\mathrm{d}^4x\mathrm{d}^4y\bar{c}^{\mu}(x)c^{\nu}(y)\mathcal{M}_{\mu\nu}(x,y)\right\}=C_1\det\mathcal{M}(x,y) \end{aligned}\]其中 $\mathcal{M}_{\mu\nu}(x,y)=\eta_{\mu\nu}\partial^2\delta^4(x-y)$
. 基于类似的讨论,有:
于是这给出:
\[E_{0G}=-\frac{1}{2}\int\frac{\mathrm{d}^3p}{(2\pi)^3}E_{\mathbf{p}}V\times 8\]二者相加,恰好给出:
\[E_{0,Gravity}=2\times\frac{1}{2}\int\frac{\mathrm{d}^3p}{(2\pi)^3}E_{\mathbf{p}}V\]该结果不依赖于规范的选取,且与我们最初的预期完美一致。